¶
16.15.4. GEO Spatial Examples
¶
Example 1
## Get All Stuff For Given Coordinates SQL>SPARQL SELECT ?c COUNT (*) WHERE { ?m geo:geometry ?geo . ?m a ?c . FILTER (bif:st_intersects (?geo, bif:st_point (0, 52), 100)) } GROUP BY ?c ORDER BY desc 2; c callret-1 VARCHAR VARCHAR _______________________________________________________________________________ http://linkedgeodata.org/vocabulary#node 2317684 http://linkedgeodata.org/vocabulary#way 85315 http://linkedgeodata.org/vocabulary#building 14257 http://dbpedia.org/class/yago/Landmark108624891 9093 http://linkedgeodata.org/vocabulary#wood 7155 ....
¶
Example 2
## Get City Stuff Around Catholic Churches In Paris SQL> SPARQL SELECT ?m (bif:st_distance (?geo, bif:st_point (0, 52))) WHERE { ?m geo:geometry ?geo . ?m a <http://dbpedia.org/ontology/City> . FILTER (bif:st_intersects (?geo, bif:st_point (0, 52), 30)) } ORDER BY DESC 2 LIMIT 20; m callret-1 VARCHAR VARCHAR _______________________________________________________________________________ http://dbpedia.org/resource/Stansted_Mountfitchet 39.13180985471543 http://dbpedia.org/resource/Stansted_Mountfitchet 39.13180985471543 http://dbpedia.org/resource/Stansted_Mountfitchet 39.13180985471543 http://dbpedia.org/resource/Stansted_Mountfitchet 39.13180985471543 http://dbpedia.org/resource/Stansted_Mountfitchet 37.36907252285992 http://dbpedia.org/resource/Stansted_Mountfitchet 34.49432513061792 http://dbpedia.org/resource/Stansted_Mountfitchet 33.7676326404143 http://dbpedia.org/resource/Stansted_Mountfitchet 33.24238654570499 http://dbpedia.org/resource/Stansted_Mountfitchet 32.60139660515003 http://dbpedia.org/resource/Stansted_Mountfitchet 32.60139660515003 http://dbpedia.org/resource/Stansted_Mountfitchet 31.45681319171456 http://dbpedia.org/resource/Stansted_Mountfitchet 31.115377038 http://dbpedia.org/resource/Stansted_Mountfitchet 31.115377038 http://dbpedia.org/resource/Stansted_Mountfitchet 30.56388658524301 http://dbpedia.org/resource/Stansted_Mountfitchet 29.89662974046085 http://dbpedia.org/resource/Stansted_Mountfitchet 29.85090625132639 http://dbpedia.org/resource/Stansted_Mountfitchet 29.82605254366244 http://dbpedia.org/resource/Stansted_Mountfitchet 29.60102064794003 http://dbpedia.org/resource/Stansted_Mountfitchet 29.44147385851453 http://dbpedia.org/resource/Stansted_Mountfitchet 29.421242437379
¶
Example 3
## Get City Stuff Around Catholic Churches In Paris Extended SQL> SPARQL SELECT ?m (bif:st_distance (?geo, bif:st_point (0, 52))) WHERE { ?m geo:geometry ?geo . ?m a <http://dbpedia.org/ontology/City> . FILTER (bif:st_intersects (?geo, bif:st_point (0, 52), 100)) } ORDER BY DESC 2 LIMIT 20; m callret-1 VARCHAR VARCHAR _______________________________________________________________________________ http://dbpedia.org/resource/Weston-on-Trent 138.7082197019335 http://dbpedia.org/resource/Weston-on-Trent 137.7213767969613 http://dbpedia.org/resource/Weston-on-Trent 136.4597167847218 http://dbpedia.org/resource/Weston-on-Trent 134.1807668663677 http://dbpedia.org/resource/Weston-on-Trent 133.104337839536 http://dbpedia.org/resource/Weston-on-Trent 133.104337839536 http://dbpedia.org/resource/Nonington 132.7368236183588 http://dbpedia.org/resource/Nonington 132.1339163200362 http://dbpedia.org/resource/Nonington 132.1339163200362 http://dbpedia.org/resource/Nonington 130.5478483560461 http://dbpedia.org/resource/Nonington 130.1620410981843 http://dbpedia.org/resource/Nonington 129.8549842943355 http://dbpedia.org/resource/Nonington 129.6459280567849 http://dbpedia.org/resource/Nonington 129.4504858595742 http://dbpedia.org/resource/Nonington 129.2790713235814 http://dbpedia.org/resource/Nonington 128.9081040147881 http://dbpedia.org/resource/Nonington 128.8845164618929 http://dbpedia.org/resource/Nonington 128.6676189617872 http://dbpedia.org/resource/Nonington 128.2565253458452 http://dbpedia.org/resource/Nonington 128.2551696344652 20 Rows. -- 120 msec.
¶
Example 4
## Text Or Geo SQL> SPARQL SELECT ?c COUNT (*) WHERE { ?m geo:geometry ?geo . ?m a ?c . FILTER (bif:st_intersects (?geo, bif:st_point (0, 52), 100) && REGEX (str (?c), "London") ) } GROUP BY ?c ORDER BY DESC 2 LIMIT 10; c callret-1 ____________________________________________________________________________ http://dbpedia.org/class/yago/DistrictsOfLondon 861 http://dbpedia.org/class/yago/GradeIListedBuildingsInLondon 199 http://dbpedia.org/class/yago/MuseumsInLondon 107 http://dbpedia.org/class/yago/ArtMuseumsAndGalleriesInLondon 92 http://dbpedia.org/class/yago/GradeIIListedBuildingsInLondon 89 http://dbpedia.org/class/yago/SportsVenuesInLondon 80 http://dbpedia.org/class/yago/RoyalBuildingsInLondon 72 http://dbpedia.org/class/yago/LondonOvergroundStations 69 http://dbpedia.org/class/yago/NationalGovernmentBuildingsInLondon 69 http://dbpedia.org/class/yago/SkyscrapersInLondon 60
¶
Example 5
## Example "Places Of Worship, Within 5 km Of Paris": ## Describes places of worship, within 5 km of Paris, ## that have cafes in close proximity(0.2 km). ## The query requires V6 or higher. SQL> PREFIX lgv: <http://linkedgeodata.org/vocabulary#> DESCRIBE ?cafe ?church WHERE { ?church a lgv:place_of_worship . ?church geo:geometry ?churchgeo . ?church lgv:name ?churchname . ?cafe a lgv:cafe . ?cafe lgv:name ?cafename . ?cafe geo:geometry ?cafegeo . ?cafe geo:lat ?lat . ?cafe geo:long ?long . FILTER ( bif:st_intersects ( ?churchgeo, bif:st_point ( 2.3498, 48.853 ), 5 ) && bif:st_intersects ( ?cafegeo, ?churchgeo, 0.2 ) ) } LIMIT 10; @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . @prefix ns1: <http://linkedgeodata.org/triplify/node/243360870#> . @prefix ns2: <http://linkedgeodata.org/vocabulary#> . ns1:id rdf:type ns2:place_of_worship , ns2:node . @prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> . ns1:id geo:lat 48.8794 ; geo:long 2.3748 ; ns2:created_by "Potlatch 0.6c" ; ns2:name "Saint-Georges de la Villette" ; ns2:religion "christian" , ns2:christian . @prefix virtrdf: <http://www.openlinksw.com/schemas/virtrdf#> . ns1:id geo:geometry "POINT(2.3748 48.8794)"^^virtrdf:Geometry . @prefix ns5: <http://linkedgeodata.org/triplify/node/266632049#> . ns5:id rdf:type ns2:node , ns2:cafe ; geo:lat 48.8518 ; geo:long 2.325 ; ns2:created_by "Potlatch 0.9a" ; ns2:name "Le Babylone" ; geo:geometry "POINT(2.325 48.8518)"^^virtrdf:Geometry . ....
¶
Example 6
## Count Geo SQL> SPARQL SELECT ?c COUNT (*) WHERE { ?s geo:geometry ?geo . FILTER (bif:st_intersects (?geo, bif:st_point (2.3498, 48.853), 5)) . ?s a ?c } GROUP BY ?c ORDER BY desc 2 LIMIT 10; c callret-1 VARCHAR VARCHAR _______________________________________________________________________________ http://linkedgeodata.org/vocabulary#node 37792 http://dbpedia.org/class/yago/Landmark108624891 4003 http://linkedgeodata.org/vocabulary#way 1688 http://linkedgeodata.org/vocabulary#building 719 http://linkedgeodata.org/vocabulary#station 257 http://linkedgeodata.org/vocabulary#post_box 247 http://www.w3.org/2002/07/owl#Thing 227 http://linkedgeodata.org/vocabulary#park 208 http://linkedgeodata.org/vocabulary#restaurant 198 http://dbpedia.org/ontology/Place 192 10 Rows. -- 932 msec.
¶
Example 7
## Get Stuff Around Notre Dame De Paris SQL> SPARQL SELECT ?c COUNT (*) WHERE { ?s a ?c . ?s geo:geometry ?geo . FILTER (bif:st_intersects (?geo, bif:st_point (2.3498, 48.853), 0.3)) } GROUP BY ?c ORDER BY desc 2 LIMIT 10; c callret-1 VARCHAR VARCHAR _______________________________________________________________________________ http://linkedgeodata.org/vocabulary#node 408 http://dbpedia.org/class/yago/Landmark108624891 134 http://linkedgeodata.org/vocabulary#way 17 http://dbpedia.org/class/yago/RomanCatholicChurchesInParis 17 http://dbpedia.org/class/yago/TallBuildingsAndStructuresInParis 13 http://dbpedia.org/class/yago/CathedralsInFrance 13 http://sw.opencyc.org/2008/06/10/concept/Mx4rvVigPpwpEbGdrcN5Y29ycA 13 http://sw.opencyc.org/2008/06/10/concept/Mx4rjm5QanS6EdaAAACgyZzFrg 13 http://sw.opencyc.org/2008/06/10/concept/Mx4rwQwtGpwpEbGdrcN5Y29ycA 13 http://www.w3.org/2002/07/owl#Thing 10 10 Rows. -- 241 msec.
¶
Example 8
## Things within 10 km proximity of place of worship SQL> SPARQL PREFIX lgv: <http://linkedgeodata.org/vocabulary#> SELECT ?c COUNT (*) WHERE { ?s a ?c . ?s a lgv:place_of_worship . ?s geo:geometry ?geo . FILTER (bif:st_intersects (?geo, bif:st_point (2.3498, 48.853), 10)) } GROUP BY ?c ORDER BY desc 2 LIMIT 10; c callret-1 VARCHAR VARCHAR _______________________________________________________________________________ http://linkedgeodata.org/vocabulary#place_of_worship 147 http://linkedgeodata.org/vocabulary#node 146 http://linkedgeodata.org/vocabulary#way 46 http://linkedgeodata.org/vocabulary#building 36 http://linkedgeodata.org/vocabulary#attraction 3 http://linkedgeodata.org/vocabulary#church 1 6 Rows. -- 120 msec.
¶
Example 9
## Get Stuff Around Notre Dame De Paris with Names SQL> SPARQL PREFIX lgv: <http://linkedgeodata.org/vocabulary#> SELECT ?cn WHERE { ?s lgv:name ?cn . ?s geo:geometry ?geo . FILTER (bif:st_intersects (?geo, bif:st_point (2.3498, 48.853), 0.3)) } LIMIT 20; cn VARCHAR _______________________________________________________________________________ Parking Lagrange Maitre Albert B&B Le Grenier de Notre Dame Eglise Saint-Julien-le-Pauvre Eglise Saint Julien le Pauvre Polly Magoo Point 0 des Routes de France Square Jean XXIII .... 20 Rows. -- 140 msec.
¶
Example 10
## Get Churches With The Most Bars SQL> SPARQL PREFIX lgv: <http://linkedgeodata.org/vocabulary#> SELECT ?churchname ?cafename (bif:st_distance (?churchgeo, ?cafegeo)) WHERE { ?church a lgv:place_of_worship . ?church geo:geometry ?churchgeo . ?church lgv:name ?churchname . ?cafe a lgv:cafe . ?cafe lgv:name ?cafename . ?cafe geo:geometry ?cafegeo . FILTER (bif:st_intersects (?churchgeo, bif:st_point (2.3498, 48.853), 5) && bif:st_intersects (?cafegeo, ?churchgeo, 0.2)) } LIMIT 10; churchname cafename callret-2 VARCHAR VARCHAR VARCHAR _______________________________________________________________________________ Eglise Saint-Julien-le-Pauvre Le Saint R+?-?gis 0.09759308692691648 Eglise Saint-Germain des Pr+?-?s Caf+?-? de Flore 0.08774468391412803 Eglise Saint-Germain des Pr+?-?s Les Deux Magots 0.05235923473923059 Eglise Saint-Germain des Pr+?-?s Caf+?-? Mabillon 0.1712042770289815 Eglise Saint-Germain-des-Pr+?-?s Caf+?-? de Flore 0.1466502865197912 Eglise Saint-Germain-des-Pr+?-?s Les Deux Magots 0.1096767137079839 Eglise Saint-Germain-des-Pr+?-?s Bar du march+?-? 0.1831441251868126 Eglise Saint-Germain-des-Pr+?-?s Caf+?-? Mabillon 0.1174051745495528 Synagogue La Chaise au Plafond 0.1038387283609551 Synagogue Le Loir dans la Th+?-?i+?-?re 0.1632848322062273 10 Rows. -- 511225 msec.
¶
Example 11
## Things around highly populated places SQL> SPARQL SELECT ?s ( sql:num_or_null (?o) ) COUNT (*) WHERE { ?s <http://dbpedia.org/ontology/populationTotal> ?o . FILTER ( sql:num_or_null (?o) > 6000000 ) . ?s geo:geometry ?geo . FILTER ( bif:st_intersects (?pt, ?geo,2) ) . ?xx geo:geometry ?pt } GROUP BY ?s ( sql:num_or_null (?o) ) ORDER BY desc 3 LIMIT 20; s callret-1 callret-2 VARCHAR VARCHAR VARCHAR _______________________________________________________________________________ http://dbpedia.org/resource/London 7556900 312307 http://dbpedia.org/resource/Toronto 8102163 115859 http://dbpedia.org/resource/New_York_City 8363710 95629 http://dbpedia.org/resource/The_Hague 6659300 84410 http://dbpedia.org/resource/Tokyo 12790000 78618 http://dbpedia.org/resource/Philadelphia 6385461 67115 http://dbpedia.org/resource/Los_Angeles 17755322 64394 http://dbpedia.org/resource/Bangkok 8160522 62519 http://dbpedia.org/resource/Barcelona 2147483648 57635 http://dbpedia.org/resource/Cairo 6758581 52738 http://dbpedia.org/resource/Istanbul 12697164 50745 http://dbpedia.org/resource/Seoul 10421782 43962 http://dbpedia.org/resource/Beijing 17430000 35979 http://dbpedia.org/resource/Purmerend 6659300 33508 http://dbpedia.org/resource/Baghdad 6554126 33426 http://dbpedia.org/resource/Bogot%C3%A1 6776009 30429 http://dbpedia.org/resource/Mexico_City 8836045 30127 http://dbpedia.org/resource/Jakarta 8500000 28944 http://dbpedia.org/resource/Boston 7514759 27705 http://dbpedia.org/resource/Baden-W%C3%BCrttemberg 10755000 25112 20 Rows. -- 4296 msec.
¶
Example 12
## Example "Places Of Worship, Within 5 km Of Paris": ## Constructs a custom Linked Data Mesh (graph) about ## places of worship, within 5 km of Paris, that have ## cafes in close proximity(0.2 km). ## Note: we have distinct pin colors that identify ## for places of worship distinct from cafes. ## The query requires V6 or higher. SQL> SPARQL PREFIX lgv: <http://linkedgeodata.org/vocabulary#> PREFIX rtb: <http://www.openlinksw.com/schemas/oat/rdftabs#> CONSTRUCT { ?cafe geo:geometry ?cafegeo ; rtb:useMarker '01' ; lgv:name ?cafename . ?church geo:geometry ?churchgeo ; rtb:useMarker '02' ; lgv:name ?churchname . } WHERE { ?church a lgv:place_of_worship . ?church geo:geometry ?churchgeo . ?church lgv:name ?churchname . ?cafe a lgv:cafe . ?cafe lgv:name ?cafename . ?cafe geo:geometry ?cafegeo . ?cafe geo:lat ?lat . ?cafe geo:long ?long . FILTER ( bif:st_intersects ( ?churchgeo, bif:st_point ( 2.3498, 48.853 ), 5 ) && bif:st_intersects ( ?cafegeo, ?churchgeo, 0.2 ) ) } LIMIT 10; @prefix ns0: <http://linkedgeodata.org/vocabulary#> . @prefix ns1: <http://linkedgeodata.org/triplify/node/237435716#> . ns1:id ns0:name "Chapelle du Val de Gr\u00C3\u00A2ce" . @prefix ns2: <http://www.openlinksw.com/schemas/oat/rdftabs#> . ns1:id ns2:useMarker "02" . @prefix virtrdf: <http://www.openlinksw.com/schemas/virtrdf#> . @prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> . ns1:id geo:geometry "POINT(2.3418 48.8406)"^^virtrdf:Geometry . @prefix ns5: <http://linkedgeodata.org/triplify/node/218147750#> . ns5:id ns0:name "Synagogue" ; ns2:useMarker "02" ; geo:geometry "POINT(2.3593 48.857)"^^virtrdf:Geometry . @prefix ns6: <http://linkedgeodata.org/triplify/node/218145208#> . ns6:id ns0:name "Synagogue" ; ns2:useMarker "02" ; geo:geometry "POINT(2.3589 48.8567)"^^virtrdf:Geometry . ...
¶
Example 13
## Example "Places Of Worship, Within 5 km Of Paris": ## Asks for places of worship, within 5 km of Paris, ## that have cafes in close proximity(0.2 km). ## The query requires V6 or higher. SQL> SPARQL PREFIX lgv: <http://linkedgeodata.org/vocabulary#> ASK WHERE { ?church a lgv:place_of_worship . ?church geo:geometry ?churchgeo . ?church lgv:name ?churchname . ?cafe a lgv:cafe . ?cafe lgv:name ?cafename . ?cafe geo:geometry ?cafegeo . ?cafe geo:lat ?lat . ?cafe geo:long ?long . FILTER ( bif:st_intersects ( ?churchgeo, bif:st_point ( 2.3498, 48.853 ), 5 ) && bif:st_intersects ( ?cafegeo, ?churchgeo, 0.2 ) ) }; Done. true
¶
Example 14
## Places of worship, within 5 km of Paris, ## that have cafes in close proximity(0.2 km) SQL> SPARQL PREFIX lgv: <http://linkedgeodata.org/vocabulary#> SELECT DISTINCT ?cafe ?lat ?long ?cafename ?churchname (bif:round(bif:st_distance (?churchgeo, ?cafegeo))) WHERE { ?church a lgv:place_of_worship . ?church geo:geometry ?churchgeo . ?church lgv:name ?churchname . ?cafe a lgv:cafe . ?cafe lgv:name ?cafename . ?cafe geo:geometry ?cafegeo . ?cafe geo:lat ?lat. ?cafe geo:long ?long. FILTER ( bif:st_intersects (?churchgeo, bif:st_point (2.3498, 48.853), 5) && bif:st_intersects (?cafegeo, ?churchgeo, 0.2) ) } LIMIT 10; cafe lat long cafename churchname callret-5 VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR _______________________________________________________________________________________________________________________________________________________________ http://linkedgeodata.org/triplify/node/321932192#id 48.8522 2.3484 Le Saint R+?-?gis Eglise Saint-Julien-le-Pauvre 0 http://linkedgeodata.org/triplify/node/251699776#id 48.8541 2.3326 Caf+?-? de Flore Eglise Saint-Germain des Pr+?-?s 0 http://linkedgeodata.org/triplify/node/251699775#id 48.854 2.3331 Les Deux Magots Eglise Saint-Germain des Pr+?-?s 0 http://linkedgeodata.org/triplify/node/315769036#id 48.8533 2.3358 Caf+?-? Mabillon Eglise Saint-Germain des Pr+?-?s 0 http://linkedgeodata.org/triplify/node/251699776#id 48.8541 2.3326 Caf+?-? de Flore Eglise Saint-Germain-des-Pr+?-?s 0 http://linkedgeodata.org/triplify/node/251699775#id 48.854 2.3331 Les Deux Magots Eglise Saint-Germain-des-Pr+?-?s 0 http://linkedgeodata.org/triplify/node/315769035#id 48.8539 2.3371 Bar du march+?-? Eglise Saint-Germain-des-Pr+?-?s 0 http://linkedgeodata.org/triplify/node/315769036#id 48.8533 2.3358 Caf+?-? Mabillon Eglise Saint-Germain-des-Pr+?-?s 0 http://linkedgeodata.org/triplify/node/251126326#id 48.8572 2.3577 La Chaise au Plafond Synagogue 0 http://linkedgeodata.org/triplify/node/251043135#id 48.8562 2.361 Le Loir dans la Th+?-?i+?-?re Synagogue 0 10 Rows. -- 120 msec.
¶
Example 15
## Stuff around Notre Dame de Paris SQL> SPARQL PREFIX lgv: <http://linkedgeodata.org/vocabulary#> SELECT ?s ?cn ?lat ?long WHERE { ?s lgv:name ?cn . ?s geo:geometry ?geo . ?s geo:lat ?lat. ?s geo:long ?long. FILTER ( bif:st_intersects (?geo, bif:st_point (2.3498, 48.853), 0.3) ) } LIMIT 20; s cn lat long VARCHAR VARCHAR VARCHAR VARCHAR ______________________________________________________________________________________________________________ http://linkedgeodata.org/triplify/node/237004656#id Parking Lagrange 48.8506 2.3487 http://linkedgeodata.org/triplify/node/237003117#id Mus+?-?e de l'Assistance Publique H+?-opitaux de Paris 48.8507 2.3519 http://linkedgeodata.org/triplify/way/23071565#id Jardin de la Rue de Bi+?-?vre 48.8504 2.3502 http://linkedgeodata.org/triplify/node/251652818#id Maitre Albert B&B 48.8507 2.3496 http://linkedgeodata.org/triplify/node/251373384#id Le Grenier de Notre Dame 48.8513 2.35 http://linkedgeodata.org/triplify/node/205266764#id Eglise Saint-Julien-le-Pauvre 48.852 2.3471 http://linkedgeodata.org/triplify/way/19741083#id Eglise Saint Julien le Pauvre 48.8521 2.3469 http://linkedgeodata.org/triplify/node/251474112#id Polly Magoo 48.8526 2.3467 http://linkedgeodata.org/triplify/node/251531803#id H+?-otel Esmerelda 48.8523 2.3468 http://linkedgeodata.org/triplify/node/191031796#id Point 0 des Routes de France 48.8533 2.3489 http://linkedgeodata.org/triplify/way/20444455#id Square Jean XXIII 48.8529 2.3511 http://linkedgeodata.org/triplify/way/19740745#id Square Ren+?-? Viviani 48.8525 2.3476 http://linkedgeodata.org/triplify/node/321932192#id Le Saint R+?-?gis 48.8522 2.3484 http://linkedgeodata.org/triplify/node/27440965#id Notre-Dame de Paris 48.853 2.3499 http://linkedgeodata.org/triplify/node/243461762#id Parking Notre-Dame 48.8537 2.3475 http://linkedgeodata.org/triplify/way/21816758#id Notre-Dame de Paris 48.8531 2.349 http://linkedgeodata.org/triplify/way/22972062#id La Seine 48.8538 2.3531 http://linkedgeodata.org/triplify/way/25463927#id La Seine 48.8548 2.3518 http://linkedgeodata.org/triplify/node/251128395#id H+?-otel Hospitel 48.854 2.3484 http://linkedgeodata.org/triplify/way/14155323#id H+?-otel Dieu 48.8555 2.3485 20 Rows. -- 167 msec.
¶
Example 16
## Stuff around Notre Dame de Paris SQL> SPARQL PREFIX lgv: <http://linkedgeodata.org/vocabulary#> DESCRIBE ?s WHERE { ?s lgv:name ?cn . ?s geo:geometry ?geo . ?s geo:lat ?lat. ?s geo:long ?long. FILTER (bif:st_intersects (?geo, bif:st_point (2.3498, 48.853), 0.3)) } LIMIT 20; @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . @prefix ns1: <http://linkedgeodata.org/triplify/node/27440966#> . @prefix ns2: <http://linkedgeodata.org/vocabulary#> . ns1:id rdf:type ns2:node , ns2:police . @prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> . ns1:id geo:lat 48.8542 ; geo:long 2.3473 ; ns2:created_by "Potlatch 0.6a" ; ns2:name "Pr\u00C3\u00A9fecture de Police de Paris" , "Pr\u00E9fecture de Police de Paris" . @prefix virtrdf: <http://www.openlinksw.com/schemas/virtrdf#> . ns1:id geo:geometry "POINT(2.3473 48.8542)"^^virtrdf:Geometry . @prefix ns5: <http://linkedgeodata.org/triplify/node/27440965#> . ns5:id rdf:type ns2:node , ns2:place_of_worship ; geo:lat 48.853 ; geo:long 2.3499 ; ns2:denomination "catholic" ; ns2:name "Notre-Dame de Paris" ; ns2:religion "christian" , ns2:christian ; geo:geometry "POINT(2.3499 48.853)"^^virtrdf:Geometry . ......
¶
Example 17
## Cities within 30 km proximity of London SQL> SPARQL SELECT ?m (bif:round(bif:st_distance (?geo, ?gm))) WHERE { <http://dbpedia.org/resource/London> geo:geometry ?gm . ?m geo:geometry ?geo . ?m a <http://dbpedia.org/ontology/City> . FILTER (bif:st_intersects (?geo, ?gm, 30)) } ORDER BY DESC 2 LIMIT 20; m callret-1 VARCHAR VARCHAR ____________________________________________________________ http://dbpedia.org/resource/Bletchingley 30 http://dbpedia.org/resource/Bletchingley 30 http://dbpedia.org/resource/Bletchingley 30 http://dbpedia.org/resource/Bletchingley 30 http://dbpedia.org/resource/Bletchingley 30 http://dbpedia.org/resource/Bletchingley 30 http://dbpedia.org/resource/Bletchingley 30 http://dbpedia.org/resource/Bletchingley 30 http://dbpedia.org/resource/Bletchingley 30 http://dbpedia.org/resource/Bletchingley 30 http://dbpedia.org/resource/Bletchingley 30 http://dbpedia.org/resource/Bletchingley 30 http://dbpedia.org/resource/Bletchingley 30 http://dbpedia.org/resource/Bletchingley 30 http://dbpedia.org/resource/Bletchingley 30 http://dbpedia.org/resource/Ebbsfleet_Valley 30 http://dbpedia.org/resource/Bletchingley 30 http://dbpedia.org/resource/Bletchingley 30 http://dbpedia.org/resource/Bletchingley 30 http://dbpedia.org/resource/Bletchingley 30 20 Rows. -- 727666 msec.
¶
Example 18
## Motorways across England & Scotland from DBpedia SQL> SPARQL PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX dbpprop: <http://dbpedia.org/property/> PREFIX yago: <http://dbpedia.org/class/yago/> SELECT ?road ?services ?lat ?long WHERE { { ?services dbpprop:road ?road . ?road a yago:MotorwaysInEngland . ?services dbpprop:lat ?lat . ?services dbpprop:long ?long . } UNION { ?services dbpprop:road ?road . ?road a yago:MotorwaysInScotland . ?services dbpprop:lat ?lat . ?services dbpprop:long ?long . } } LIMIT 20; road services lat long VARCHAR VARCHAR VARCHAR VARCHAR ______________________________________________________________________________________________________________________________________ http://dbpedia.org/resource/M90_motorway http://dbpedia.org/resource/Kinross_services 56.209628 -3.439257 http://dbpedia.org/resource/M1_motorway http://dbpedia.org/resource/Leicester_Forest_East_services 52.6192 -1.206 http://dbpedia.org/resource/M1_motorway http://dbpedia.org/resource/Woodall_services 53.3152 -1.2813 http://dbpedia.org/resource/M1_motorway http://dbpedia.org/resource/Tibshelf_services 53.13708 -1.33179 http://dbpedia.org/resource/M1_motorway http://dbpedia.org/resource/London_Gateway_services 51.631 -0.264 http://dbpedia.org/resource/M1_motorway http://dbpedia.org/resource/Donington_Park_services 52.823651 -1.305887 http://dbpedia.org/resource/M1_motorway http://dbpedia.org/resource/Watford_Gap_services 52.3069 -1.1226 http://dbpedia.org/resource/M1_motorway http://dbpedia.org/resource/Newport_Pagnell_services 52.083066 -0.748508 http://dbpedia.org/resource/M1_motorway http://dbpedia.org/resource/Trowell_services 52.963198 -1.265988 http://dbpedia.org/resource/M1_motorway http://dbpedia.org/resource/Woolley_Edge_services 53.62259 -1.549422 http://dbpedia.org/resource/M1_motorway http://dbpedia.org/resource/Toddington_services 51.9478 -0.502075 http://dbpedia.org/resource/M1_motorway http://dbpedia.org/resource/Northampton_services 52.209201 -0.944799 http://dbpedia.org/resource/M4_motorway http://dbpedia.org/resource/Chieveley_services 51.449 -1.3112 http://dbpedia.org/resource/M4_motorway http://dbpedia.org/resource/Magor_services 51.58786 -2.83713 http://dbpedia.org/resource/M4_motorway http://dbpedia.org/resource/Pont_Abraham_services 51.74712 -4.0655 http://dbpedia.org/resource/M4_motorway http://dbpedia.org/resource/Swansea_services 51.678197 -3.994646 http://dbpedia.org/resource/M4_motorway http://dbpedia.org/resource/Leigh_Delamere_services 51.511528 -2.159468 http://dbpedia.org/resource/M4_motorway http://dbpedia.org/resource/Reading_services 51.424527 -1.035633 http://dbpedia.org/resource/M4_motorway http://dbpedia.org/resource/Cardiff_West_services 51.50626 -3.30535 http://dbpedia.org/resource/M4_motorway http://dbpedia.org/resource/Heston_services 51.48807 -0.39106 20 Rows. -- 531 msec.
¶
Example 19
SELECT DISTINCT ?s (bif:round(?lat)) as ?lat (bif:round(?long)) as ?long WHERE { { SELECT ?g ?s WHERE { graph ?g { ?s geo:geometry ?geo } } LIMIT 100 } graph ?g { ?s geo:lat ?lat . ?s geo:long ?long . } FILTER (datatype (?lat) in (xsd:integer, xsd:float, xsd:double)) . FILTER (datatype (?long) in (xsd:integer, xsd:float, xsd:double)) } s lat long ANY ANY ANY ________________________________________________________________________________________________ http://dbpedia.org/resource/QUaD -90 -139 http://dbpedia.org/resource/Amundsen-Scott_South_Pole_Station -90 -139 http://dbpedia.org/resource/Amundsen-Scott_South_Pole_Station -90 0 http://dbpedia.org/resource/Degree_Angular_Scale_Interferometer -90 -139 http://dbpedia.org/resource/South_Pole_Telescope -90 -139 http://dbpedia.org/resource/Arcminute_Cosmology_Bolometer_Array_Receiver -90 -139 http://dbpedia.org/resource/Viper_telescope -90 -139 http://dbpedia.org/resource/Mount_Weaver -87 -154 http://dbpedia.org/resource/Axel_Heiberg_Glacier -85 -163 http://dbpedia.org/resource/Mount_Ray -85 -171 http://linkedgeodata.org/triplify/node/275487234#id -85 -142 http://linkedgeodata.org/triplify/node/303732928#id -85 -142 http://linkedgeodata.org/triplify/node/332036611#id -85 -85 http://linkedgeodata.org/triplify/node/303732935#id -85 -143 http://linkedgeodata.org/triplify/node/303732951#id -85 -144 http://linkedgeodata.org/triplify/node/303732953#id -85 -144 http://linkedgeodata.org/triplify/node/276208684#id -85 -166
¶
Example 19
## "Find things within 20km of New York City": SELECT DISTINCT ?resource ?label ?location WHERE { <http://dbpedia.org/resource/New_York_City> geo:geometry ?sourcegeo . ?resource geo:geometry ?location ; rdfs:label ?label . FILTER( bif:st_intersects( ?location, ?sourcegeo, 20 ) ) . FILTER( lang(?label) = "en" ) }
¶
Example 20
## "Find Distance between New York City ## and London, England": SELECT ( bif:st_distance( ?nyl,?ln ) ) AS ?distanceBetweenNewYorkCityAndLondon WHERE { <http://dbpedia.org/resource/New_York_City> geo:geometry ?nyl . <http://dbpedia.org/resource/London> geo:geometry ?ln . }
¶
Example 21
## "Find "All Educational Institutions ## within 10km of Oxford, UK; ordered by ## date of establishment": SELECT DISTINCT ?thing AS ?uri ?thingLabel AS ?name ?date AS ?established ?matchgeo AS ?location WHERE { <http://dbpedia.org/resource/Oxford> geo:geometry ?sourcegeo . ?resource geo:geometry ?matchgeo . FILTER( bif:st_intersects( ?matchgeo, ?sourcegeo, 5 ) ) . ?thing ?somelink ?resource ; <http://dbpedia.org/ontology/established> ?date ; rdfs:label ?thingLabel . FILTER( lang(?thingLabel) = "en" ) } ORDER BY ASC( ?date )
¶
Example 22
## "Find Historical cross section of events related ## to Edinburgh and the surrounding area (within 30km) ## during the 19th century": SELECT DISTINCT ?thing ?thingLabel ?dateMeaningLabel ?date ?matchgeo WHERE { { SELECT DISTINCT ?thing ?matchgeo WHERE { <http://dbpedia.org/resource/Edinburgh> geo:geometry ?sourcegeo . ?resource geo:geometry ?matchgeo . FILTER( bif:st_intersects ( ?matchgeo, ?sourcegeo, 30 ) ) . ?thing ?somelink ?resource } } { ?property rdf:type owl:DatatypeProperty ; rdfs:range xsd:date } . ?thing ?dateMeaning ?date . FILTER( ?dateMeaning IN ( ?property ) ) . FILTER( ?date >= xsd:gYear("1800") && ?date <= xsd:gYear("1900") ) ?dateMeaning rdfs:label ?dateMeaningLabel . FILTER( lang(?dateMeaningLabel) = "en" ) . ?thing rdfs:label ?thingLabel . FILTER( lang(?thingLabel) = "en" ) } ORDER BY ASC ( ?date )