Top

16.17.14. DBpedia Benchmark

We ran the DBpedia benchmark queries again with different configurations of Virtuoso. Comparing numbers given by different parties is a constant problem. In the case reported here, we loaded the full DBpedia 3, all languages, with about 198M triples, onto Virtuoso v5 and Virtuoso Cluster v6, all on the same 4 core 2GHz Xeon with 8G RAM. All databases were striped on 6 disks. The Cluster configuration was with 4 processes in the same box. We ran the queries in two variants:

  • With graph specified in the SPARQL FROM clause, using the default indices.

  • With no graph specified anywhere, using an alternate indexing scheme.

The times below are for the sequence of 5 queries. As there is a query in the set that specifies no condition on S or O and only P, thus cannot be done with the default indices With Virtuoso v5. With Virtuoso Cluster v6 it can, because v6 is more space efficient. So we added the index:

create bitmap index rdf_quad_pogs on rdf_quad (p, o, g, s);

Table 16.20. 

  Virtuoso v5 with gspo, ogps, pogs Virtuoso Cluster v6 with gspo, ogps Virtuoso Cluster v6 with gspo, ogps, pogs
cold 210 s 136 s 33.4 s
warm 0.600 s 4.01 s 0.628 s

Now let us do it without a graph being specified. Note that alter index is valid for v6 or higher. For all platforms, we drop any existing indices, and:

create table r2 (g iri_id_8, s, iri_id_8, p iri_id_8, o any, primary key (s, p, o, g))
alter index R2 on R2 partition (s int (0hexffff00));

log_enable (2);
insert into r2 (g, s, p, o) SELECT g, s, p, o from rdf_quad;

drop table rdf_quad;
alter table r2 rename RDF_QUAD;
create bitmap index rdf_quad_opgs on rdf_quad (o, p, g, s) partition (o varchar (-1, 0hexffff));
create bitmap index rdf_quad_pogs on rdf_quad (p, o, g, s) partition (o varchar (-1, 0hexffff));
create bitmap index rdf_quad_gpos on rdf_quad (g, p, o, s) partition (o varchar (-1, 0hexffff));

The code is identical for v5 and v6, except that with v5 we use iri_id (32 bit) for the type, not iri_id_8 (64 bit). We note that we run out of IDs with v5 around a few billion triples, so with v6 we have double the ID length and still manage to be vastly more space efficient.

With the above 4 indices, we can query the data pretty much in any combination without hitting a full scan of any index. We note that all indices that do not begin with s end with s as a bitmap. This takes about 60% of the space of a non-bitmap index for data such as DBpedia.

If you intend to do completely arbitrary RDF queries in Virtuoso, then chances are you are best off with the above index scheme.

Table 16.21. 

  Virtuoso v5 with gspo, ogps, pogs Virtuoso Cluster v6 with gspo, ogps, pogs
warm 0.595 s 0.617 s

The cold times were about the same as above, so not reproduced.

It is in the SPARQL spirit to specify a graph and for pretty much any application, there are entirely sensible ways of keeping the data in graphs and specifying which ones are concerned by queries. This is why Virtuoso is set up for this by default.

On the other hand, for the open web scenario, dealing with an unknown large number of graphs, enumerating graphs is not possible and questions like which graph of which source asserts x become relevant. We have two distinct use cases which warrant different setups of the database, simple as that.

The latter use case is not really within the SPARQL spec, so implementations may or may not support this.

Once the indices are right, there is no difference between specifying a graph and not specifying a graph with the queries considered. With more complex queries, specifying a graph or set of graphs does allow some optimizations that cannot be done with no graph specified. For example, bitmap intersections are possible only when all leading key parts are given.

The best warm cache time is with v5; the five queries run under 600 ms after the first go. This is noted to show that all-in-memory with a single thread of execution is hard to beat.

Cluster v6 performs the same queries in 623 ms. What is gained in parallelism is lost in latency if all operations complete in microseconds. On the other hand, Cluster v6 leaves v5 in the dust in any situation that has less than 100% hit rate. This is due to actual benefit from parallelism if operations take longer than a few microseconds, such as in the case of disk reads. Cluster v6 has substantially better data layout on disk, as well as fewer pages to load for the same content.

This makes it possible to run the queries without the pogs index on Cluster v6 even when v5 takes prohibitively long.

The purpose is to have a lot of RAM and space-efficient data representation.

For reference, the query texts specifying the graph are below. To run without specifying the graph, just drop the FROM <http://dbpedia.org> from each query. The returned row counts are indicated below each query's text.

SQL>SPARQL
SELECT ?p ?o
FROM <http://dbpedia.org>
WHERE
  {
    <http://dbpedia.org/resource/Metropolitan_Museum_of_Art> ?p ?o .
  };

p                                                                                 o
VARCHAR                                                                           VARCHAR
_______________________________________________________________________________

http://www.w3.org/1999/02/22-rdf-syntax-ns#type                                   http://umbel.org/umbel/ac/Artifact
http://www.w3.org/1999/02/22-rdf-syntax-ns#type                                   http://dbpedia.org/class/yago/MuseumsInNewYorkCity
http://www.w3.org/1999/02/22-rdf-syntax-ns#type                                   http://dbpedia.org/class/yago/ArtMuseumsAndGalleriesInTheUnitedStates
http://www.w3.org/1999/02/22-rdf-syntax-ns#type                                   http://dbpedia.org/class/yago/Museum103800563
..
-- 335 rows

SQL>SPARQL
PREFIX p: <http://dbpedia.org/property/>
SELECT ?film1 ?actor1 ?film2 ?actor2
FROM <http://dbpedia.org>
WHERE
  {
    ?film1 p:starring <http://dbpedia.org/resource/Kevin_Bacon> .
    ?film1 p:starring ?actor1 .
    ?film2 p:starring ?actor1 .
    ?film2 p:starring ?actor2 .
};

film1                                       actor1                                    film2                                        ctor2
VARCHAR                                     VARCHAR                                   VARCHAR                                      ARCHAR
http://dbpedia.org/resource/The_River_Wild  http://dbpedia.org/resource/Kevin_Bacon   http://dbpedia.org/resource/The_River_Wild   http://dbpedia.org/resource/Kevin_Bacon
http://dbpedia.org/resource/The_River_Wild  http://dbpedia.org/resource/Kevin_Bacon   http://dbpedia.org/resource/The_River_Wild   http://dbpedia.org/resource/Meryl_Streep
http://dbpedia.org/resource/The_River_Wild  http://dbpedia.org/resource/Kevin_Bacon   http://dbpedia.org/resource/The_River_Wild   http://dbpedia.org/resource/Joseph_Mazzello
http://dbpedia.org/resource/The_River_Wild  http://dbpedia.org/resource/Kevin_Bacon   http://dbpedia.org/resource/The_River_Wild   http://dbpedia.org/resource/David_Strathairn
http://dbpedia.org/resource/The_River_Wild  http://dbpedia.org/resource/Kevin_Bacon   http://dbpedia.org/resource/The_River_Wild   http://dbpedia.org/resource/John_C._Reilly
...
--  23910 rows

SQL>SPARQL
PREFIX p: <http://dbpedia.org/property/>
SELECT ?artist ?artwork ?museum ?director
FROM <http://dbpedia.org>
WHERE
  {
    ?artwork p:artist ?artist .
    ?artwork p:museum ?museum .
    ?museum p:director ?director
  };

artist                                          artwork                                              museum                                                                            director
VARCHAR                                         VARCHAR                                              VARCHAR                                                                           VARCHAR
_______________________________________________

http://dbpedia.org/resource/Paul_C%C3%A9zanne   http://dbpedia.org/resource/The_Basket_of_Apples     http://dbpedia.org/resource/Art_Institute_of_Chicago                              James Cuno
http://dbpedia.org/resource/Paul_Signac         http://dbpedia.org/resource/Neo-impressionism        http://dbpedia.org/resource/Art_Institute_of_Chicago                              James Cuno
http://dbpedia.org/resource/Georges_Seurat      http://dbpedia.org/resource/Neo-impressionism        http://dbpedia.org/resource/Art_Institute_of_Chicago                              James Cuno
http://dbpedia.org/resource/Edward_Hopper       http://dbpedia.org/resource/Nighthawks               http://dbpedia.org/resource/Art_Institute_of_Chicago                              James Cuno
http://dbpedia.org/resource/Mary_Cassatt        http://dbpedia.org/resource/The_Child%27s_Bath       http://dbpedia.org/resource/Art_Institute_of_Chicago                              James Cuno
..
-- 303 rows

SQL>SPARQL
PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT ?s ?homepage
FROM <http://dbpedia.org>
WHERE
  {
    <http://dbpedia.org/resource/Berlin> geo:lat ?berlinLat .
    <http://dbpedia.org/resource/Berlin> geo:long ?berlinLong .
    ?s geo:lat ?lat .
    ?s geo:long ?long .
    ?s foaf:homepage ?homepage .
    FILTER (
      ?lat        <=     ?berlinLat + 0.03190235436 &&
      ?long       >=     ?berlinLong - 0.08679199218 &&
      ?lat        >=     ?berlinLat - 0.03190235436 &&
      ?long       <=     ?berlinLong + 0.08679199218) };

s                                                                                 homepage
VARCHAR                                                                           VARCHAR
_______________________________________________________________________________

http://dbpedia.org/resource/Berlin_University_of_the_Arts                         http://www.udk-berlin.de/
http://dbpedia.org/resource/Berlin_University_of_the_Arts                         http://www.udk-berlin.de/
http://dbpedia.org/resource/Berlin_Zoological_Garden                              http://www.zoo-berlin.de/en.html
http://dbpedia.org/resource/Federal_Ministry_of_the_Interior_%28Germany%29        http://www.bmi.bund.de
http://dbpedia.org/resource/Neues_Schauspielhaus                                  http://www.goya-berlin.com/
http://dbpedia.org/resource/Bauhaus_Archive                                       http://www.bauhaus.de/english/index.htm
http://dbpedia.org/resource/Canisius-Kolleg_Berlin                                http://www.canisius-kolleg.de
http://dbpedia.org/resource/Franz%C3%B6sisches_Gymnasium_Berlin                   http://www.fg-berlin.cidsnet.de
..
-- 48 rows

SQL>SPARQL
PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX p: <http://dbpedia.org/property/>
SELECT ?s ?a ?homepage
FROM <http://dbpedia.org>
WHERE
  {
    <http://dbpedia.org/resource/New_York_City> geo:lat ?nyLat .
    <http://dbpedia.org/resource/New_York_City> geo:long ?nyLong .
    ?s geo:lat ?lat .
    ?s geo:long ?long .
    ?s p:architect ?a .
    ?a foaf:homepage ?homepage .
    FILTER (
      ?lat        <=     ?nyLat + 0.3190235436 &&
      ?long       >=     ?nyLong - 0.8679199218 &&
      ?lat        >=     ?nyLat - 0.3190235436 &&
      ?long       <=     ?nyLong + 0.8679199218) };
s                                                                                 a               homepage
VARCHAR                                                                           VARCHAR              VARCHAR
_______________________________________________________________________________

http://dbpedia.org/resource/GE_Building                                           http://dbpedia.org/resource/Associated_Architects              http://www.associated-architects.co.uk
http://dbpedia.org/resource/Giants_Stadium                                        http://dbpedia.org/resource/HNTB              http://www.hntb.com/
http://dbpedia.org/resource/Fort_Tryon_Park_and_the_Cloisters                     http://dbpedia.org/resource/Frederick_Law_Olmsted              http://www.asla.org/land/061305/olmsted.html
http://dbpedia.org/resource/Central_Park                                          http://dbpedia.org/resource/Frederick_Law_Olmsted              http://www.asla.org/land/061305/olmsted.html
http://dbpedia.org/resource/Prospect_Park_%28Brooklyn%29                          http://dbpedia.org/resource/Frederick_Law_Olmsted              http://www.asla.org/land/061305/olmsted.html
http://dbpedia.org/resource/Meadowlands_Stadium                                   http://dbpedia.org/resource/360_Architecture              http://oakland.athletics.mlb.com/oak/ballpark/new/faq.jsp
http://dbpedia.org/resource/Citi_Field                                            http://dbpedia.org/resource/HOK_Sport_Venue_Event              http://www.hoksve.com/
http://dbpedia.org/resource/Citigroup_Center                                      http://dbpedia.org/resource/Hugh_Stubbins_Jr.              http://www.klingstubbins.com
http://dbpedia.org/resource/150_Greenwich_Street                                  http://dbpedia.org/resource/Fumihiko_Maki              http://www.pritzkerprize.com/maki2.htm
http://dbpedia.org/resource/Freedom_Tower                                         http://dbpedia.org/resource/David_Childs              http://www.som.com/content.cfm/www_david_m_childs
http://dbpedia.org/resource/7_World_Trade_Center                                  http://dbpedia.org/resource/David_Childs              http://www.som.com/content.cfm/www_david_m_childs
http://dbpedia.org/resource/The_New_York_Times_Building                           http://dbpedia.org/resource/Renzo_Piano              http://www.rpbw.com/
http://dbpedia.org/resource/Trump_World_Tower                                     http://dbpedia.org/resource/Costas_Kondylis              http://www.kondylis.com

13 Rows. -- 2183 msec.